A Two-Stage-Classifier for Defect Classification in Optical Media Inspection
نویسندگان
چکیده
A pattern recognition system used for industrial inspection has to be highly reliable and fast. The reliability is essential for reducing the cost caused by incorrect decisions, while speed is necessary for real–time operation. In this paper we address the problem of inspecting optical media like Compact Disks and Digital Versatile Disks. Here, defective disks have to be identified during production. For optimizing the production process and in order to be able to decide how critical a certain defect is, the defects found have to be classified. As this has to be done on–line, the classification algorithm has to work very fast. Concerning speed, the well known minimum distance classifier is usually a good choice. However, when training data are not well clustered in feature–space this classifier becomes rather unreliable. To trade–off speed and reliability we propose a two–stage– algorithm. It combines fast minimum distance classification with a reliable fuzzy k–nearest neighbor classifier. The resulting two–stage–classifier is considerably faster than the fuzzy k–nearest neighbor classifier. Its classification rates are in the range of the fuzzy k–nearest neighbor classifier and far better than those of the minimum distance classifier. To evaluate the results, we compare them to the results obtained using various standard classifiers.
منابع مشابه
A Hierarchical Classification Method for Breast Tumor Detection
Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملEnhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection
Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the ”one-agains...
متن کاملSemiconductor defect classification using hyperellipsoid clustering neural networks and model switching
An automatic defect classification (ADC) system for visual inspection of semiconductor wafers, using a neural network classifier is introduced. The proposed Hyperellipsoid Clustering Network (HCN) employing a Radial Basis Function (RBF) in the hidden layer, is trained with additional penalty conditions for recognizing unfamiliar inputs as originating from an unknown defect class. Also, by using...
متن کاملAutomatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002